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Conversations

Figure: Different types of conversation happening over Internet
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What can we do about it ?

Internet of Things: Network of physical objects or ”things” embedded with electronics,
software, sensors, and network connectivity, which enables these objects to collect and
exchange data

Information extracted from these conversations act a signals for IoT devices

Finding behavior of the person from conversation data to change lighting of the rooms,
playlist of music player, cooking suggestion etc
Understating intoxicated state to automatically disable the driving mode of the car, sending
messages to close friends for pickup, or connecting to cab services

To enable IOT, the focus of the hour is to utilize conversation data for creating end user
applications
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Overview

1 Analyzing Call Center Operation Data for Quality Monitoring of Customer Calls

2 Analyzing Tweets to Predict Whether User is Alcohol Intoxicated or Not

3 Analyzing Newspaper Comments for Clustering and Labelling
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Part 1

Analyzing Call Center Operation Data for Quality Monitoring of Customer Calls
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Part 1: Introduction

Quality Monitoring (QM) of customer calls is critical for companies[15, 22]

Performed through call monitoring questionnaires specific to the account [12]

Random sample of the calls monitored for different dimensions as specified in QM
questionnaires by a quality supervisors
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Part 1: Introduction

However, manual QM is not an efficient process

An account gets 200-4500 call per day,2 to 10 calls per agent per month is monitored[9]

Exists a supervisor bias

QM questionnaire contains multiple dimensions for specific questions, orthogonal
assessments are possible

Attrition rate of employees

New laws on user privacy mandate strict data masking and storing procedures

Balamurali A R (LIF) Understanding Conversations for End User Applications Jan 5, 2016 7 / 47



Part 1: Objective

Semi-automatic evaluation of the QM for call center data by flagging the conversations which
might require deeper inspection by QM supervisors
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Part 1: Related Work

They can be broadly classified into three categories:

1 Studies related to queuing, staffing and prediction [17, 20, 21, 18]

2 Studies focusing on improving technological and social environment of the call
centers[19, 18, 7]

3 Studies related to behavioral and conversational analysis. [12, 5, 15, 22]

Our study focuses on the latter.

[12] introduces a quality management system to asses the service of call centers. The
system uses a set of features to classify each call as good or bad based on different
aspects of the quality questionnaire

Studies suggest that a customer service can vastly be improved by studying the customer
behavior [15]

When exceptional number of calls being handled, contrasting behavior are seen [1]
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Part 1: Methodology

Annotate a call center data(Decoda corpus) based on QM parameters as PASS or NON
PASS as per specific QM parameter

Create a supervised flagging based system to flag NON-PASS samples for QM supervisors
to monitor
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Part 1: Quality Parameters

ID Quality Monitoring Parameters
1 Agent respects opening procedure
2 Agent listens actively and asks relevant ques-

tions
3 Agent shows the information in a clear, com-

prehensive and essential way
4 Agent manages the objections reassuring the

customer and always focusing on client satis-
faction

5 Agent manages the call with safety
6 Agent uses positive words
7 Agent follows the closing script
8 Agent is polite and proactive with the customer
9 Agent is able to adapt to the style of client’s

communication always maintaining profession-
alism

10 Agent Management: he negotiates the wait al-
ways giving reasons

11 Ability to listen

Table: Quality Monitoring Parameters Evaluated
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Part 1: Annotation Agreement Details

Annotation Categories

The category PASS reflect that annotator is satisfied with specific objective mentioned in
the QM questionnaire.

If they are unsatisfactory, then they are marked as FAIL.

If the annotators do not have sufficient information to make decision they are marked as
NA.

For developing the Flagging based system, FAIL and NA class together constitute the
NON-PASS class
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Part 1: Annotation Agreement

Quest. ID Pass Fail NA Kappa Agreement
1 346 0 2 1.0 Perfect
2 303 15 30 0.08 Slight
3 334 6 8 0.44 Moderate
4 240 25 83 0.15 Slight
5 329 15 4 0.51 Moderate
6 182 76 90 -0.13 No
7 332 3 13 0.54 Moderate
8 341 4 3 0.65 Moderate
9 330 14 4 0.53 Moderate
10 206 3 139 0.90 Perfect
11 326 16 6 0.25 Fair

Table: Inter-annotation agreement using Fleiss Kappa along with category selected based on majority
voting
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Part 1: Annotation Agreement Discussion

Moderate inter-annotation agreement.

QM task is highly subjective (for instance question 2, 4 and 6)

Multiple dimensions assessed (for instance question 3)

Fully automatic quality monitoring cannot be performed.

The agreement at the question level is moderate

QM supervisor differ on the FAIL parameters given to justify their decision
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Part 1: Flagging based system for Quality Monitoring

Figure: Process Flow diagram for Flagging based system and CallAn interface

SVM based learner using a linear kernel optimized for maximizing recall [13].
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Part 1: Features

Text Features (TF)

Sentiment Features
Agent Utterance Features

Meta Features (MF)

Conversation Time Features
Conversation Length Features
Wait Time Features

Speech Features (SF)

Fundamental frequency,
Voicing probability
Loudness contour.
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Part 1: Flagging based system

Feature Set PASS Non-PASS Overall
Precision Recall Fscore Precision Recall Fscore Precision Recall Fscore

SF 0.75 0.75 0.75 0.23 0.23 0.23 0.63 0.63 0.63
TF 0.94 0.94 0.94 0.8 0.82 0.81 0.91 0.91 0.91
MF 0.75 0.73 0.74 0.23 0.25 0.24 0.63 0.62 0.62
SF+MF 0.75 0.75 0.75 0.23 0.23 0.23 0.63 0.62 0.62
SF+TF 0.79 0.82 0.8 0.36 0.32 0.34 0.68 0.7 0.69
TF+MF 0.94 0.94 0.94 0.8 0.82 0.81 0.91 0.91 0.91
SF+MF+TF 0.79 0.82 0.81 0.37 0.32 0.34 0.69 0.7 0.69

Table: Results of Flagging based QM system on various feature sets
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Part 1: Analyzing output of Flagging based system

Figure: CallAn User Interface

Code:https://gitlab.lif.univ-mrs.fr/balamurali.ar/acof-dashboard
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Part 1: Conclusion

Flagging based approach for call center quality monitoring is proposed

High recall based system could be developed to detect NON-PASS call conversation

Future work

Since Text based features give the best performance, can we use learn a shared
representation for two languages

Reduces the need for collecting other set of features

How well does it perform on noisy ASR outputs
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Part 2

Analyzing Tweets to Predict Whether User is Alcohol Intoxicated or Not
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Part 2: Introduction

‘I m anakin skywrtr er ’

‘Retrnd frm wrk l8 2day, d trafic ws bad ’

Which one is written in an intoxicated state?
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Part 2: Introduction

‘I m anakin skywrtr er ’ - Durnk

‘Retrnd frm wrk l8 2day, d trafic ws bad ’ - Sober
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Part 2: Motivation

Past studies show the relation between alcohol use and undesirable social behaviour like
aggression [4], crime [6], suicide attempts [11], drunk driving [10] and risky sexual
behaviour [3].

Drunk texting may also be regrettable

You must be knowing why

Driving while intoxicated

Highest cause of unnatural deaths in many countries
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Part 2: Challenges

1 More than topic categorization: [2] show that alcohol users have more pronounced
emotions, specifically, anger. In this respect, drunk texting prediction lies at the
confluence of topic categorization and emotion classification.

2 Identification of negative examples: It is difficult to obtain a set of sober tweets, unless
given by the author of the tweet. For example, it is ambiguous whether ‘I am feeling
lonely tonight’ is a drunk tweet. This is similar to sarcasm expressed as exaggeration (say,
‘This is the best film ever!), where context beyond the text needs to be considered.

3 Precision/Recall trade-off: It can be very application sensitive
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Part 2: Dataset Creation

To create dataset, Hashtag-based distant supervision as in tasks like emotion classification [14]
is used.

1 Dataset 1: Collected tweets that are marked as drunk and sober using hashtags. Tweets
containing hashtags #drunk, #drank and #imdrunk are considered as drunk tweets,
while those with #notdrunk, #imnotdrunk and #sober are sober tweets.

2 Dataset 2: Drunk tweets are downloaded using drunk hashtags as above. The list of
users who created these tweets is extracted. For the negative class, we download tweets
by these users, which do not contain the hashtags corresponding to drunk tweets.

3 Dataset H: Drunk tweets are downloaded using drunk hashtags as above. The set of
sober tweets is collected using both approaches above. The resultant is the held-out test
set Dataset-H which contains no tweets in common with Datasets 1 and 2.
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Part 2: Features

N-gram Features
Unigram (Presence) Bigram (Presence) Unigram (Count) Bigram (Count)

Stylistic Features
LDA unigrams (Presence) POS Ratio #Named Entity Mentions #Discourse Connectors

LDA unigrams (Count) Spelling error Repeated characters Capitalization

Length Emoticon (Count) Emoticon (Presence) Sentiment Ratio

Table: Feature set for our drunk text prediction system
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Part 2: Classification Results

A
(%)

NP
(%)

PP
(%)

NR
(%)

PR
(%)

Dataset 1
N-gram 85.5 72.8 88.8 63.4 92.5

Stylistic 75.6 32.5 76.2 3.2 98.6

All 85.4 71.9 89.1 64.6 91.9

Dataset 2
N-gram 77.9 82.3 65.5 87.2 56.5

Stylistic 70.3 70.8 56.7 97.9 6.01

All 78.1 82.6 65.3 86.9 57.5

Table: Performance of our features on Datasets 1 and 2; A: Accuracy, PP/NP: Positive/Negative
Precision, PR/NR: Positive/Negative Recall
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Part 2: How does Humans fare on detecting drunk state

Annotation agreement on Dataset H (Held out data)

A1 A2 A3

A1 - 0.42 0.36

A2 0.42 - 0.30

A3 0.36 0.30 -

Table: Cohen’s Kappa for three annotators (A1-A3)
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Part 2: Held out data evaluation

A
(%)

NP
(%)

PP
(%)

NR
(%)

PR
(%)

Annotators 68.8 71.7 61.7 83.9 43.5

Training
Dataset

Our classifiers

Dataset 1 47.3 70 40 26 81

Dataset 2 64 70 53 72 50

Table: Performance of human evaluators and our classifiers (trained on all features), for Dataset-H as
test set; A: Accuracy, PP/NP: Positive/Negative Precision, PR/NR: Positive/Negative Recall
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Part 2: Summary

Introduced the task of drunk text prediction

Possible to predict drunk state by analyzing tweets

Future work

Capturing the keystrokes from Android keyboard and modelling the sober state

Detecting the drunk state from keystrokes and analyzing the actual text content
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Part 3

Analyzing Newspaper Comments for Clustering and Labelling
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Part 3: Demo

Demo :http://pageperso.lif.univ-mrs.fr/~balamurali.ar/sensei.html
http://139.124.5.125/vis/examples/network/interactive.php?article=281
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Part 3: Introduction

Online news outlets attract large volumes of comments every day. The Huffington Post,
for example, received an estimated 140,000 comments in a 3 day period, while The
Guardian has reported receiving 25,000 to 40,000 comments per day

How to assimilate and comprehend them?
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Part 3: Solution

Automatically generate end-user friendly topic clusters of reader comments to online news
articles. We propose graph-based methods to address two tasks:

1 To group reader comments into topic clusters

2 To label the clusters for the topic(s) they represent
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Part 3: Labeling

Topic labelling algorithms are extractive[16]

red, blue, green, yellow ⇒ red

However, abstractive labeling makes life easier

red, blue, green, yellow ⇒ type of colors
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Part 3: Abstractive Labelling

Modify the graph-based topic labelling algorithm described in [8] Basically the algorithm uses

Topic graph of all the topics that the cluster represents

Use DBpedia to create graphs

Expand using DBpedia relations

Use centrality measure to find the common label that encompasses
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Part 3: Abstractive Labelling

Require: topicsList(θ), relations to expand (X ), graph centrality measure(R)
1: label ← empty
2: for all θj ∈ θ do
3: T θj ← initializeGraph(V ,E , θj)
4: for all Wi ∈ C θj do
5: Gi ← expandGraph(X ,T θj ,Wi )
6: T θj ← Gi ∪ T θj

7: end for
8: label j ← getCentralNode(T θj ,R)
9: label ← label ∪ label j

10: end for
11: return label
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Part 3: Generated Label

I was working in the south of France during the 2003 heatwave and I would wear a hat which I
kept soaked in water while at work, lie in a bath full of cold water before going to bed to get
my body temperature down and drink gallons of water through out the day and before going
to bed. My thermometer only went up to 50 degrees centigrade so I don’t know how hot it
was during the day but at 3 in the morning it was 32 degrees centigrade. I also avoided
alcohol. It was hot. Here in Devon it’s rarely been under 75 since June. In these conditions,
dogs die due to stupid owners leaving them in cars, people under-hydrate and pass out,
wild-fires start due to fag ends on dry grass, all sorts of stuff happens. It depends where you
are, but some of the UK is baking.........

System Generated Label:Occupational safety and health
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Part 3: Labeling Evaluation

Qualitative Evaluation of Labels

Create system generated labels

Give the comments to choose from

Choice provided for no labelling scenario as well

Calculate the accuracy and the inter-annotation agreement
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Part 3: Annotation agreement

Annotators A-B B-C C-A Overall
Agreement 0.76 0.45 0.64 0.61

Table: Annotator agreement (Fleiss Kappa) for comment labelling over 22 comment clusters
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Part 3: Annotation accuracy

Annotator Data Precision Recall F-score NA
A 0.7 0.59 0.61 12
B 0.73 0.62 0.61 11
C 0.85 0.76 0.75 2

mean 0.76 0.6566 0.66

Table: Evaluation results of the cluster labeling system for each of the 3 annotators
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Part 3: Summary

Introduced a graph based abstractive algorithm

Sensible label creation - However, not perfect

Future Work

Create facts to support the labels generated

Code

https://gitlab.lif.univ-mrs.fr/balamurali.ar/topic_labeller

https://gitlab.lif.univ-mrs.fr/balamurali.ar/ISummerization
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