Compositionality prediction of Multiword Expressions

Silvio Ricardo Cordeiro Aline Villavicencio

Carlos Ramisch

Outline

- Introduction
- Compositionality dataset
- Compositionality prediction
- Conclusions

Introduction

Computational Semantics

- We are interested in semantics.
 - Representing the meaning of words and sentences.
- Computational semantics has applications in:
 - Machine translation.
 - Information extraction.
 - Text simplification.
 - Question answering.
 - o ...

Principle of compositionality

- The meaning of the **whole** comes from the meaning of the **parts**.
- *"The mouse is running from the brown cat"*

Distributional Semantics

- At the word-level: Distributional Hypothesis
 - "You shall know a word by the <u>company</u> it keeps" Firth, 1957

• Consider the word **fish**:

... and <u>fish</u> that <u>swim</u> between submerged branches need to ...
... wondering: where do <u>fish</u> learn to <u>swim</u>? ...
... you may see some <u>fish</u> as you <u>walk</u> along the river ...
... if the <u>fish</u> are <u>swimming</u> upstream, they will ...
... we <u>swim</u> in a three-dimensional world, among parrot <u>fish</u> and ...
... as you <u>swim</u> along, you can see different kinds of <u>fish</u> ...

Distributional Semantics

- Distributional Semantic Models (DSMs):
 - Each word has a representation in \mathbb{R}^n
 - Source: words in context.
- Properties:
 - Similar concepts are near each other.
 - Vector arithmetic (e.g. for analogy tasks).

Distributional Semantics

- <u>Weakness</u>: Multiword Expressions (MWEs).
- MWEs can range from compositional to idiomatic:
 - climate change > ... > milk tooth > ... > hot dog > cloud nine
- Non-compositional cases need special treatment.
 - Our goal: automatically detect the level of *compositionality*.
- Assume this hypothesis:
 - MWE is compositional \Leftrightarrow MWE is similar to the sum of its meanings
 - e.g. $v(climate_change) \approx v(climate) + v(change)$.

Not a <u>hot dog</u>.

Nominal compounds

- We focus on a type of MWE known as <u>nominal compounds</u>.
 - More specifically: **noun-noun** and **adjective-noun** compounds.

Main contributions

- To construct & analyze compositionality datasets.
- To provide a **pipeline** for compositionality prediction.
 - Including a token-based MWE identifier.
- To evaluate DSM models & parameters for compositionality prediction.

Compositionality datasets

Compositionality datasets

- MWEs and their *compositionality*
 - *Numerical judgments* through crowdsourcing
 - Useful for evaluating <u>compositionality prediction</u>
- Reddy et al. [2011]
 - 90 English nominal compounds
 - ~15 mechanical turkers annotate each compound
 - \circ $\,$ Each compound is given a score between 0 and 5 $\,$
- Farahmand et al. [2014]
 - 1042 English nominal compounds
 - \circ 4 experts giving each compound a score of 0 or 1

MWE		1	1
nut_case	1	1	1
labour_union	5	5	4
engine_room	5	5	5
milk_tooth	2	3	3

Compositionality datasets

- We adapt the methodology of Reddy and Farahmand:
 - Multiple languages: English, French, and Portuguese
 - 180 compounds for each language
 - For each compound:
 - ~15 annotators (Mechanical Turk)
 - Annotators must provide at least 2 synonyms
 - Requested compositionality judgments between 0 and 5
 - Judgments for head, modifier and for the compound as a whole

Dataset collection questionnaire

1. Read the following expression:	
2. Read the following sentences containing the expression pocket	book:
 All of these are at good prices to suit your pocket book. He gave me some Spanish books and a pocket book and diary. She had written down the date in her pocket book of the day whe 	n she dispatched it.
3. Type in 2 to 3 expressions that are equivalent to <i>pocket book</i> :	Required
4. In your opinion, is a pocket book always literally a book?	
NO $\bigcirc 1 2 3 4 5$ YES	
5. In your opinion, is the meaning of a pocket book always literall	y related to <i>pocket</i> ?
NO \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc YES	
6. Given your previous replies, would you say that a pocket book i	s always literally a book which is related to pocket?
NO 0 1 2 3 4 5 YES	
No — it is <u>weird</u> to imagine a <i>book</i> which is related to po	ocket, even if the meaning is understandable

Compositionality scores

- All 3 datasets:
 - Balanced in compositionality.
 - Head/mod have a pattern.

Ramisch, Cordeiro, Zilio, Idiart, Villavicencio, Wilkens. How Naked is the Naked Truth? A Multilingual Lexicon of Nominal Compound Compositionality. In: ACL 2016 (short paper). Qualis: A1.

Compositionality prediction

Compositionality prediction

Spearman Correlation

Compositionality prediction pipeline

- We have implemented a pipeline as part of the mwetoolkit:
 - <u>Read</u> MWEs & DSM vectors.
 - For each MWE:
 - Combine its components and compare against the MWE itself.
 - The comparison results in a predicted compositionality score.
 - <u>Calculate correlation</u> between prediction and human scores.

Cordeiro, Ramisch, Villavicencio. *mwetoolkit+sem: Integrating Word Embeddings in the mwetoolkit for Semantic MWE Processing*. In: **LREC 2016**. Qualis: **A2**.

MWE identification

- DSM vectors must include MWEs.
- We have implemented a MWE identifier.
 - Works on multiple corpus formats.
 - Good F₁ for <u>noun compounds</u>.

Cordeiro, Ramisch, Villavicencio. UFRGS&LIF: Rule-Based MWE Identification and Predominant-Supersense Tagging. In: SemEval 2016. Qualis: B4.

Full pipeline

DSMs & parameters

• Our next goal is to investigate DSMs & parameters:

<u>DSMs</u>

- → PPMI-TopK: global contexts [Salehi et al., 2015]
- → **PPMI-thresh**: local context threshold
- → **PPMI-SVD**: dimensionality reduction [Dinu et al, 2013]
- → glove: dimensionality reduction [Pennington et al., 2014]
- → w2v (word2vec): neural networks [Mikolov, 2013]

DSMs & parameters

- Total of 816 models.
- We present the results for our datasets.

d₂₅₀ < d₅₀₀ < d₇₅₀

Comparing with State of the Art

- Dataset from Reddy et al [2011]: <u>Model & Parameters</u> Reddy et al [2011] Salehi et al [2015]
 <u>Spearman ρ</u>
 <u>.71</u>
 .80
 <u>.80</u>
 <u>.82 / .80</u>
 <u>.80 / .80
 </u>
 <u>.80
 </u>
- Dataset from Farahmand et al [2015]: Model & Parameters Yazdani et al [2015]
 Best w2v (sg, WF=lemma, D=500, W=1) Best PPMI(svd, WF=lemma, D=750, W=4)
 .52 / .45

Cordeiro, Ramisch, Idiart, Villavicencio. Predicting the Compositionality of Nominal Compounds: Giving Word Embeddings a Hard Time. In: ACL 2016 (long paper). Qualis: A1.

Conclusions

Conclusions

- Constructed 3 compositionality datasets.
 - Also evaluated statistical properties and the impact of filtering.
- Built a compositionality prediction **pipeline**.
 - $\circ \quad \text{Corpus} \rightarrow \text{Corpus+MWEs} \rightarrow \text{DSM vectors} \rightarrow \text{predict \& evaluate.}$
- Performed extensive evaluation of DSMs & parameters.
 - Classical model as good as neural networks.
 - Higher number of dimensions often better.
 - Lemmas better for French, not impactful for English.
 - POS-tags are often unhelpful.

Publications

- <u>Cordeiro</u>, Ramisch, Idiart, Villavicencio. *Predicting the Compositionality of Nominal Compounds: Giving Word Embeddings a Hard Time*. In: **ACL 2016 (long paper)**. Qualis: A1.
- Ramisch, <u>Cordeiro</u>, Zilio, Idiart, Villavicencio, Wilkens. *How Naked is the Naked Truth? A Multilingual Lexicon of Nominal Compound Compositionality*. In: **ACL 2016 (short paper)**. Qualis: A1.
- <u>Cordeiro</u>, Ramisch, Villavicencio. *mwetoolkit+sem: Integrating Word Embeddings in the mwetoolkit for Semantic MWE Processing*. In: **LREC 2016**. Qualis: A2.
- Ramisch, <u>Cordeiro</u>, Villavicencio. *Filtering and Measuring the Intrinsic Quality of Human Compositionality Judgments*. In: **MWE 2016**. Qualis: B3.
- Zilio, Wilkens, Möllmann, Wehrli, <u>Cordeiro</u>, Villavicencio. *Joining forces for multiword expression identification*. In: **PROPOR 2016**. Qualis: B3.
- <u>Cordeiro</u>, Ramisch, Villavicencio. *UFRGS&LIF: Rule-Based MWE Identification and Predominant-Supersense Tagging*. In: **SemEval 2016**. Qualis: B4.

Publications

- <u>Cordeiro</u>, Ramisch, Villavicencio. *Token-based MWE Identification Strategies in the mwetoolkit*. In: **PARSEME 2015**.
- <u>Cordeiro</u>, Ramisch, Villavicencio. *Nominal Compound Compositionality: A Multilingual Lexicon and Predictive Model*. In: **PARSEME 2016**.
- <u>Cordeiro</u>, Ramisch, Villavicencio. *MWE-aware corpus processing with the mwetoolkit and word embeddings*. In: W-PROPOR 2016.

Compositionality prediction of Multiword Expressions

Thank you!

Silvio Ricardo Cordeiro Aline Villavicencio Carlos Ramisch

(Extra slides)

Highest results for English: strict vs loose

Missing data: strict (smaller dataset) loose (fallback)

Compounds vs difficulty of annotation

Approximating whole-compound judgment

Problem #1 meets #2

- MWEs can be polysemic:
 - $\circ \quad \text{``I just ate a delicious <u>piece of cake</u>"} \rightarrow compositional$
 - \circ "The test was a <u>piece of cake</u>" \rightarrow non-compositional

Compositionality prediction

(Work in progress)

Work in progress

- Currently investigating other configurations:
 - Portuguese language.
 - Impact of corpus size.
 - Composing scores from smaller corpora (ensemble).
 - Analyzing the influence of *head* vs *mod* in score.
 - o ...
- Goal: submit a paper to Computational Linguistics.

Planned research

Polysemy

Word-sense induction of types

… the lion let the mouse go …	\rightarrow mouse.animal
playing a cat and mouse game	\rightarrow mouse.animal
an owl catching a <u>mouse</u>	\rightarrow mouse.animal
when a mouse click occurs	\rightarrow mouse.device
pressing the mouse selects the	\rightarrow mouse.device
using a mouse and keyboard	\rightarrow mouse.device

Word-sense disambiguation of tokens

Word-sense induction of types

- We will focus on sense induction
 - Pre-requisite for good disambiguation.
 - Current solutions ignore MWE.
 - \circ We have an <u>idea</u>.

Word-sense induction of types

the lion let the mouse go	\rightarrow n.animal
playing a cat and mouse game	\rightarrow n.animal
an owl catching a mouse	\rightarrow n.animal
when a mouse click occurs	\rightarrow n.artifact
pressing the mouse selects the	\rightarrow n.artifact
using a mouse and keyboard	\rightarrow n.artifact

Annotated corpus from SemEval 2016 task 10

Word-sense induction of types

Distributional Hypothesis: use contexts!

the <u>lion</u> let the <u>mouse</u> go	\rightarrow n.animal
playing a <u>cat</u> and <u>mouse</u> game	\rightarrow n.animal
an owl <u>catching</u> a <u>mouse</u>	\rightarrow n.animal
when a mouse click occurs	\rightarrow n.artifact
pressing the mouse selects the	\rightarrow n.artifact
using a mouse and <u>keyboard</u>	\rightarrow n.artifact
	1

Annotated corpus from SemEval 2016 task 10

• Evaluation:

- Word similarity task (e.g. SimLex-999 dataset)
 - Idea: Use most similar sense when comparing for sinonimy
 - e.g.: mouse ≈ cat; mouse ≈ keyboard; cat *** keyboard

- Compositionality task (e.g. our compositionality datasets)
 - Idea: Use most similar sense when testing compositionality
 - e.g.: *mouse trap* and *mouse click* would be both compositional

