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Computational Semantics

● We are interested in semantics.
○ Representing the meaning of words and sentences.

● Computational semantics has applications in:
○ Machine translation.
○ Information extraction.
○ Text simplification.
○ Question answering.
○ …

4Introduction



● The meaning of the whole comes from the meaning of the parts.

● “The mouse is running from the brown cat”

Principle of compositionality
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Distributional Semantics

● At the word-level: Distributional Hypothesis
○ “You shall know a word by the company it keeps”   — Firth, 1957

● Consider the word fish:

… and fish that swim between submerged branches need to …
… wondering: where do fish learn to swim? ...
... you may see some fish as you walk along the river …
… if the fish are swimming upstream, they will …
… we swim in a three-dimensional world, among parrot fish and …
… as you swim along, you can see different kinds of fish …
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Distributional Semantics

● Distributional Semantic Models (DSMs):
○ Each word has a representation in ℝn

○ Source: words in context.

● Properties:
○ Similar concepts are near each other.
○ Vector arithmetic (e.g. for analogy tasks).

leg

sw
im

(1, 8) fish

(7, 3) dog

(9, 2) cat

Source: Mikolov [2013]
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● Weakness: Multiword Expressions (MWEs).

● MWEs can range from compositional to idiomatic:
○ climate change ﹥ … ﹥ milk tooth ﹥ … ﹥ hot dog ﹥ cloud nine

● Non-compositional cases need special treatment.
○ Our goal: automatically detect the level of compositionality.

● Assume this hypothesis:
○ MWE is compositional ⇔ MWE is similar to the sum of its meanings

■ e.g. v(climate_change) ≈ v(climate) + v(change).

Distributional Semantics

Not a hot dog.
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Nominal compounds

● We focus on a type of MWE known as nominal compounds.
○ More specifically: noun-noun and adjective-noun compounds.
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Main contributions

● To construct & analyze compositionality datasets.

● To provide a pipeline for compositionality prediction.
○ Including a token-based MWE identifier.

● To evaluate DSM models & parameters for compositionality prediction.
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Compositionality datasets
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Compositionality datasets

● MWEs and their compositionality
○ Numerical judgments through crowdsourcing

○ Useful for evaluating compositionality prediction

● Reddy et al. [2011]
○ 90 English nominal compounds
○ ~15 mechanical turkers annotate each compound
○ Each compound is given a score between 0 and 5

● Farahmand et al. [2014]
○ 1042 English nominal compounds
○ 4 experts giving each compound a score of 0 or 1

MWE    

nut_case 1 1 1

labour_union 5 5 4

engine_room 5 5 5

milk_tooth 2 3 3

... ... ... ...
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Compositionality datasets

● We adapt the methodology of Reddy and Farahmand:
○ Multiple languages: English, French, and Portuguese

■ 180 compounds for each language

○ For each compound:
■ ~15 annotators (Mechanical Turk)
■ Annotators must provide at least 2 synonyms
■ Requested compositionality judgments between 0 and 5

● Judgments for head, modifier and for the compound as a whole
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Dataset collection questionnaire
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Compositionality scores

● All 3 datasets:
○ Balanced in compositionality.
○ Head/mod have a pattern.

(French)

Ramisch, Cordeiro, Zilio, Idiart, Villavicencio, Wilkens.
How Naked is the Naked Truth? A Multilingual Lexicon of Nominal 

Compound Compositionality. In: ACL 2016 (short paper). Qualis: A1.
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Compositionality prediction
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“compositional ⇔ similar to the sum of its meanings”
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DSM vectors
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Spearman Correlation
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Compositionality prediction pipeline

● We have implemented a pipeline as part of the mwetoolkit:

○ Read MWEs & DSM vectors.

○ For each MWE:
■ Combine its components and compare against the MWE itself.
■ The comparison results in a predicted compositionality score.

○ Calculate correlation between prediction and human scores.
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Cordeiro, Ramisch, Villavicencio. mwetoolkit+sem: Integrating Word Embeddings in 
the mwetoolkit for Semantic MWE Processing. In: LREC 2016. Qualis: A2.



MWE identification

● DSM vectors must include MWEs.

● We have implemented a MWE identifier.
○ Works on multiple corpus formats.
○ Good F1 for noun compounds.

ivory_tower

ivory

tower

DSM vectors
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Cordeiro, Ramisch, Villavicencio. UFRGS&LIF: Rule-Based MWE Identification
and Predominant-Supersense Tagging. In: SemEval 2016. Qualis: B4.
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ρ

Full pipeline
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was a very different guy. He needs to get
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a hot dog with us.



● Our next goal is to investigate DSMs & parameters:

DSMs & parameters
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DSMs

➔ PPMI-TopK: global contexts  [Salehi et al., 2015]

➔ PPMI-thresh: local context threshold

➔ PPMI-SVD: dimensionality reduction  [Dinu et al, 2013]

➔ glove: dimensionality reduction  [Pennington et al., 2014]

➔ w2v (word2vec): neural networks  [Mikolov, 2013]



● Total of 816 models.
● We present the results for our datasets.

DSMs & parameters
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…

Dimensions:  250, 500, 750.

We know that, when fish swim upstream, they often ...

Context window size:  1, 4, 8.

Preprocessing
➔ lemma  (e.g. walk)
➔ lemmaPOS  (e.g. walk/VERB)
➔ surface  (e.g. walks)
➔ surface+  (with stopwords)



Highest results for French dataset

● SVD: ...
● Global contexts: ✗
● Classical model: ✔
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Highest results for French dataset

● Stopword removal: ✔
● Lemmatization: ✔
● POS-tagging: ...
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Highest results for French dataset

w1 > w4 > w8
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Highest results for French dataset

d250 < d500 < d750
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Highest results for English dataset

● SVD: ✔
● Glove: ✗
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Highest results for English dataset

● Lemmatization: ✔
● Surface-forms: ✔
● Stopword removal: ❓
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Highest results for English dataset
w1 < w4 < w8 w1 > w4 > w8
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Highest results for English dataset

d250 < d500 < d750    ✔
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Comparing with State of the Art

Cordeiro, Ramisch, Idiart, Villavicencio.
Predicting the Compositionality of Nominal Compounds:

Giving Word Embeddings a Hard Time.
In: ACL 2016 (long paper). Qualis: A1.
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Conclusions
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Conclusions

● Constructed 3 compositionality datasets.
○ Also evaluated statistical properties and the impact of filtering.

● Built a compositionality prediction pipeline.
○ Corpus → Corpus+MWEs → DSM vectors → predict & evaluate.

● Performed extensive evaluation of DSMs & parameters.
○ Classical model as good as neural networks.
○ Higher number of dimensions often better.
○ Lemmas better for French, not impactful for English.
○ POS-tags are often unhelpful.
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Highest results for English: strict vs loose

Missing data:
strict (smaller dataset)
loose (fallback)



Compounds vs difficulty of annotation

(Portuguese)



Approximating whole-compound judgment

(Portuguese)



Problem #1 meets #2

● MWEs can be polysemic:
○ “I just ate a delicious piece of cake”   → compositional
○ “The test was a piece of cake”   → non-compositional



Compositionality prediction

(Work in progress)
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Work in progress

● Currently investigating other configurations:
○ Portuguese language.
○ Impact of corpus size.
○ Composing scores from smaller corpora (ensemble).
○ Analyzing the influence of head vs mod in score.

○ …

● Goal: submit a paper to Computational Linguistics.
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Planned research

Polysemy
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Planned research: Polysemy

mouse
mouse.device

… the lion let the mouse go …          → mouse.animal

… playing a cat and mouse game …    → mouse.animal

… an owl catching a mouse …            → mouse.animal

… when a mouse click occurs …        → mouse.device

... pressing the mouse selects the … → mouse.device

… using a mouse and keyboard … → mouse.device

Word-sense induction of types Word-sense disambiguation of tokens
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Planned research: Polysemy

mouse
mouse.device

Word-sense induction of types

● We will focus on sense induction
○ Pre-requisite for good disambiguation.
○ Current solutions ignore MWE.
○ We have an idea.
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Planned research: Polysemy

mouse

mouse.animal

mouse.device

… the lion let the mouse go …               → n.animal

… playing a cat and mouse game …         → n.animal

… an owl catching a mouse …                 → n.animal

… when a mouse click occurs …             → n.artifact

... pressing the mouse selects the …      → n.artifact

… using a mouse and keyboard …      → n.artifact

Word-sense induction of types Annotated corpus from SemEval 2016 task 10
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Planned research: Polysemy

… the lion let the mouse go …               → n.animal

… playing a cat and mouse game …         → n.animal

… an owl catching a mouse …                 → n.animal

… when a mouse click occurs …             → n.artifact

... pressing the mouse selects the …      → n.artifact

… using a mouse and keyboard …      → n.artifact

Word-sense induction of types Annotated corpus from SemEval 2016 task 10

Distributional Hypothesis: use contexts!
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● Evaluation:
○ Word similarity task (e.g. SimLex-999 dataset)

■ Idea: Use most similar sense when comparing for sinonimy

■ e.g.:  mouse ≈ cat;  mouse ≈ keyboard;  cat ≉ keyboard

○ Compositionality task (e.g. our compositionality datasets)
■ Idea: Use most similar sense when testing compositionality
■ e.g.: mouse trap and mouse click would be both compositional

Planned research: Polysemy

cat

mouse

mouse

keyboard
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